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1 Batch normalization

In this discussion, we will learn what is Batch Normalization, why it is needed, and how it works.
Batch Normalization was first introduced by two researchers at Google, Sergey loffe and Christian
Szegedy in their paper ‘Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift* in 2015. The authors showed that batch normalization improved the top
result of ImageNet (2014) by a significant margin using only 7% of the training steps. Today, Batch
Normalization is used in almost all CNN architectures.

1.1 Internal covariate shift
Before we jump into the nitty-gritty of batch normalization, let us first understand a basic principle

in machine learning.

Let’s say we have a flowers dataset and we want to build a binary classifier for roses. The output
is 1 if the image is that of a rose and the output is 0 otherwise.

Consider a subset of the training data that primarily has red rose buds as rose examples and
wildflowers as non-rose examples. These are shown in Figure 1.
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Figure 1: Red rose buds

Consider another subset, shown in Figure 2, that has fully blown roses of different colors as
rose examples and other non-rose flowers in the picture as non-rose examples.

Intuitively, it makes sense that every mini-batch used in the training process should have the
same distribution. In other words, a mini-batch should not have only images from one of the two
subsets above. It should have images randomly selected from both subsets in each mini-batch.

The same intuition is graphically depicted in Figure 3. The last column of Figure 3 shows the
two classes (roses and non-roses) in the feature space (shown in two dimensions for ease of visual-
ization). The blue curve shows the decision boundary. We can see the two subsets lie in different
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Figure 2: Different color roses

regions of the feature space. This difference in distribution is called the covariate shift. When
the mini-batches have images uniformly sampled from the entire distribution, there is negligible
covariate shift. However, when the mini-batches are sampled from only one of the two subsets
shown in Figure 1 and Figure 2, there is a significant covariate shift. This makes the training of
the rose vs non-rose classifier very slow.

.-

Figure 3: The top two rows of flowers show a subset of the data and the bottom two rows
show a different subset of the data. The two subsets have very different distributions. The
last column shows the distribution of the two classes in the feature space using red and green
dots. The blue line show the decision boundary between the two classes.

An easy way to solve this problem for the input layer is to randomize the data before creating
mini-batches.

But, how do we solve this for the hidden layers? Just as it made intuitive sense to have a uniform
distribution for the input layer, it is advantageous to have the same input distribution for each
hidden unit over time while training. But in a neural network, each hidden unit’s input distribu-
tion changes every time there is a parameter update in the previous layer. This is called internal
covariate shift. This makes training slow and requires a very small learning rate and a good
parameter initialization. This problem is solved by normalizing the layer’s inputs over a mini-batch



and this process is therefore called Batch Normalization.

By now we have an intuitive sense for why Batch Normalization is a good idea. Now, let’s fig-
ure out how to do this normalization.

1.2 Batch Normalization in a Neural network

Formally, denoting x € B an input to Batch Normalization (BN) that is from a minibatch B, BN

transforms x according to the following expression:
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BN(x) =7® +
where up and op are the sample mean and sample variance of the minibatch B. Note that v and
B are parameters that need to be learned jointly with the other model parameters.

Note that we add a small constant € > 0 to the variance estimate to ensure that we never attempt
division by zero, even in cases where the empirical variance estimate might vanish. The estimates
up and op counteract the scaling issue by using noisy estimates of mean and variance. You might
think that this noisiness should be a problem. As it turns out, this is actually beneficial. This turns
out to be a recurring theme in deep learning. For reasons that are not yet well-characterized theo-
retically, various sources of noise in optimization often lead to faster training and less overfitting:
this variation appears to act as a form of regularization.

1.3 Other benefits of batch normalization
1.3.1 Higher learning rate

If we use a high learning rate in a traditional neural network, then the gradients could explode
or vanish. Large learning rates can scale the parameters which could amplify the gradients, thus
leading to an explosion. But if we do batch normalization, small changes in parameter to one layer
do not get propagated to other layers. This makes it possible to use higher learning rates for the
optimizers, which otherwise would not have been possible. It also makes gradient propagation in
the network more stable.

1.3.2 Adds regularization

Since the normalization step sees all the training examples in the mini-batch together, it brings in
a regularization effect with it. If batch normalization is performed through the network, then the
dropout regularization could be dropped or reduced in strength.

1.3.3 Makes it possible to use saturating non-linearities

In traditional deep neural networks, it is very hard to use saturating activation functions like the
sigmoid, where the gradient is close to zero for inputs outside the range (-1,1). The change in
parameters in the previous layers can easily throw the activation function’s inputs close to these
saturating regions and the gradients could vanish. This problem is worse in deeper networks. On



the other hand, if the distribution of the inputs to these nonlinearities remain stable, then it would
save the optimizer from getting stuck in the saturated regions and thus training would be faster.

1.4 CIFAR-10 classification

Both the versions have roughly the same run time needed for each epoch (24-25 s), but as we see in
Figure 4, the accuracy attains a much higher value much faster if we use the batch normalization.
Without batch normalization, the model attained an accuracy of 79% after 50 epochs and with
batch normalization it increased to 87% with a much faster convergence.
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Figure 4: Model accuracy for CIFAR-10
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Figure 5: Loss trajectory for CIFAR-10



In Figure 5, we plotted the validation vs training losses for both the versions. As we can see
the validation loss reduces substantially with batch normalization.

2 Multiple choice questions on neural networks

1. In which of the following applications can we use deep learning to solve the problem?

(a) Protein structure prediction

(b) Prediction of chemical reactions
(c¢) Detection of exotic particles

(d) All of these

2. Statement 1: It is possible to train a network well by initializing all the weights as 0
Statement 2: It is possible to train a network well by initializing biases as 0

(a) Statement 1 is true while Statement 2 is false
(b) Statement 2 is true while statement 1 is false
(c) Both statements are true
(d) Both statements are false

3. The number of nodes in the input layer is 10 and the hidden layer is 5. The maximum number
of connections from the input layer to the hidden layer are

(a)
(b) Less than 50
(c) More than 50
(d) It is an arbitrary value
4. Which of the following functions can be used as an activation function in the output layer if

we wish to predict the probabilities of n classes (p1, pe, ..., px) such that sum of p over all n
equals to 17

(a) Softmax
(b) Relu
(c) Sigmoid
(d) Tanh

5. Which of following activation function can’t be used at output layer to classify an image?
(a) Sigmoid
(b) Tanh
(c) Relu



(d) None of the above

. Which of the following neural network training challenge can be solved using batch normal-
ization?

(a) Overfitting
(

)
b)
()
(d) All of the above

Restrict activations to become too high or low

Training is too slow

Practice problem

. Assuming we have a minibatch of size 2, we can represent the batch normalization for ”a

single neuron” by the following composition of functions:
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where (1), 2(?) are the 2 minibatch inputs to the batchnormalization module and y(), y(2)
are the outputs of the batchnormalization module. Note that all the above equations are
scalar equations. Suppose we have upstream gradients V,mL and V ) L.

(a) Draw the computational graph

(b) Use backpropagation to compute V)L,V @)L, VL, VgL



Figure 6: Computational graph



